If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+12k-33=0
a = 1; b = 12; c = -33;
Δ = b2-4ac
Δ = 122-4·1·(-33)
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{69}}{2*1}=\frac{-12-2\sqrt{69}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{69}}{2*1}=\frac{-12+2\sqrt{69}}{2} $
| 5x2+12x+10=0 | | x2-10x-57=0 | | 11-u=213 | | -2(-8x+2)-3=16x-6 | | -9(-8x-4)+1=72+37 | | -2(-6x-5)-4=11x+10 | | 12x-16=11x-14 | | 2(2b+3)=42 | | 7x÷10-8=14 | | 4(s+5)=106 | | (3*3-a)+(a*2*2)=15 | | 2(2b+3=42 | | −4(x−2)=32 | | 1/4x+10=2x-25 | | x/5x-2=83 | | 12x+24=15 | | 14x+14=5x+10 | | 3/4m=15,m= | | 2x-3/3‐(x‐5)=x/3 | | 9=3.14(r) | | m=12+2 | | ((1/2)e)+3=4+e | | 6 | | 4h+-5=7 | | -8=10-2j | | 4(10-2x)+2(x+1)=12 | | 6x+5+x=30 | | 6 | | 12a+4=50 | | d^2*d^2=2880*d^2 | | 0,25x+174,95=300. | | 1-3y+4=0 |